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We exactly solve the model of N harmonic interacting Bosons in a harmonic
trap in any dimension. The exact ground state wavefunction, free energy, spec-
trum, and low excitation states are calculated. The finite particle number effect
is addressed when the exact solution is compared with a mean field solution.
Then we compare the harmonic interaction system with a pseudo-potential
interaction system. In spite of the seemingly quite different nature of interaction,
several similarities are found between the two systems.
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1. INTRODUCTION

Since the breakthroughs (1, 2) on Bose–Einstein Condensation (BEC) in a
dilute alkali gas in 1995, there has been a gold rush in the study of dilute
Bose gases in confined systems. The properties of ground state, collective
modes, and vortices under rotation, etc. have been extensively studied both
experimentally and theoretically. The dominant methods in current theore-
tical BEC studies are the mean field type GP equations, where the short-
range interaction between particles is modeled by a pseudo-potential
determined by scattering length. There are two natural questions one would
like to ask. First, how good is the mean-field approximation? The BEC
system realized in the experiments is usually mesoscopic (particles number
104 ’ 107). As the experimental techniques improve, there have been



increasing demands for the investigation of the finite number effect, which
goes beyond the scope of mean field approximation. Second, does the
nature of interaction matter at all? If the answer is no, one can learn a
great deal of one system from another. In this paper, both questions are
tentatively addressed by inspection of the harmonic interaction model.
In Section 2, the model is exactly solved and compared with mean field
solution. In Section 3, we further compare it with the pseudo-potential
system.

2. EXACT SOLUTION OF HARMONIC INTERACTION MODEL

For quantum Bose systems, exactly solvable models are very rare and
often limited to one dimension. In 1960, Girardeau (3) showed that the 1-d
point hard core Bose system can be exactly mapped onto the 1-d ideal
Fermion gas. In 1963, Lieb et al. (4) solved the 1-d d-interacting uniform
Bose system using the Bethe ansatz. Recently, there have been works (5, 6) on
Richardson’s pairing model for a Bose system. Harmonic interaction model
is one which can be solved in any dimension for any particle number. It
describes N Boson particles with harmonic pair interaction in an external
harmonic trap. For simplicity, we use an isotropic harmonic trap u(r)=
1
2 mw0r

2 and set m=(=w0=1. The pair interaction can be anisotropic but
we will focus on the isotropic case in this paper. Its Hamiltonian can be
written as

Hhar=
1
2
C
N

i=1
(p2i+r2i )+K C

i < j
(ri− rj)2 (1)

where K is the strength of the interaction. This model was first used in
nuclear physics to model the strong nuclear interaction, then proposed by
Katzper and Percus (7) in 1967 to study the helium atom and later restudied
by Wilkin et al. (8) and Zaluska-Kotur et al. (9) for the Bose system.
Equation (1) in d-dimensions is the sum of d one dimensional harmo-

nic interaction Hamiltonians, so it is sufficient to study the one dimen-
sional model. Now the Hamiltonian becomes

Hhar=
1
2
C
N

i=1
(p2i+x

2
i )+K C

i < j
(xi−xj)2 (2)

Introducing the center of mass and relative coordinates and momenta:
xc=

1
N;

N
i=1 xi, pc=

1
N;

N
i=1 pi, and x

−

i=xi−xc, p
−

i=pi−pc (i=1,..., N),
the Hamiltonian can be separated into the relative and center of mass
parts:
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Hhar(w)=
1
2
C
N

i=1
(p −i

2+w2x −i
2)+
N
2
(p2c+x

2
c)

=Hrel(w)+Hcom (3)

where w=`1+2NK.
We have the following commutation relations:

[xc, pc]=i/N (4)

[x −j, p
−

k]=iajk (5)

[xc, p
−

j]=0 [x −i, pc]=0 (6)

where ajk=djk−1/N. From (6), we can see that Hrel(w) and Hcom are
independent and the N-body wavefunction can also be written as the
product of relative and center of mass parts:

Y(x1,..., xN; w)=krel(x
−

1,..., x
−

N; w) fcom(xc) (7)

If we can solve Hrel(w) krel(w)=Erel(w) krel(w) and Hcomfcom=Ecomfcom
separately, then E=Erel(w)+Ecom will be the total energy.
Equation (4) tells us that the center of mass is just a single harmonic

oscillator. The eigen-wavefunction is

fcom, m=a
†
c
mf0(`N xc) (8)

with corresponding energy

Ecom, m=m+
1
2 (m=0, 1,...) (9)

where ac and a
†
c are annihilation and creation operators of center of mass

satisfying [ac, a
†
c]=1/N and f0 is the ground state 1-d single harmonic

oscillator eigen-wavefunction.
Since ajk ] djk in (6), the motions of N relative coordinates are not

independent to each other. We can not just replace the ordinary coordi-
nates in the N non-interacting Boson harmonic oscillators wavefunction by
relative coordinates.
Define the relative annihilation and creation operators:

˛a −j=
1

`2w
(wx −j+ip

−

j)

a −j
†=

1

`2w
(wx −j−ip

−

j)

(10)
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They satisfy

[a −j, a
−

k
†]=ajk (11)

Then the relative Hamiltonian can be written as

Hrel(w)=w C
N

i=1
a −i
†a −i+

1
2
(N−1) w (12)

The ground state of Hrel(w) satisfies a
−

ikrel, 0=0 for all i’s. It is easy to
construct an unnormalized wavefunction

krel, 0=exp 1−
w

2
C
N

i=1
x −i
22 (13)

with ground state energy Erel, 0=
1
2 (N−1) w. From (2), the normalized

ground state Eq. (7) is

Y0(x1,..., xN)=
w (N−1)/4

pN/4
exp 5−1

2
w C

N

i=1
x −i
2−
1
2
Nx2c 6 (14)

The excited states can be constructed based on

[Hrel(w), a
−

i
†]=w C

N

j=1
a −j
†aji=wa

−

i
† (15)

where we have used ;N
j=1 a

−

j
†=0. So if krel, 0 is the ground state, a

−

j
†nkrel, 0

will be the unsymmetrized eigenstate with energy Erel, 0+nw. This immedi-
ately suggests the general form of symmetrized eigen-wavefunction is

krel, {ni}=C
P
P D

N

i=1
a −i
†nikrel, 0 (16)

where P means all permutations between i’s with different ni’s. The corre-
sponding energy

Erel, {ni}=Erel, 0+w C
N

i=1
ni (17)

The solution (16) looks exactly the same as for N non-interacting Bose
harmonic oscillators except that ai and a

†
j are replaced by a

−

i and a
−

j
†.

However, there are two important differences. First, due to the constraint
;N
j=1 a

−

j
†=0, some of the eigen-wavefunctions are in fact zero or redun-

dant. For example, krel, {1, 0,..., 0} is actually zero and krel, {1, 1, 0,..., 0} can be

626 Yan



reduced to krel, {2, 0,..., 0}. Second, we can see from Eq. (5) that although the
wavefunctions with different total energies are orthogonal to each other,
those with the same energies, or degenerate states, are not.
To see how many wavefunctions in (16) for a fixed ;N

i=1 ni=n
are really independent, let us consider N non-interacting Bose harmonic
oscillators. Suppose we know that the degeneracy of its nth energy level
is Dn. It is easy to see that if Yn−1 is one of the Dn−1 eigenfunctions of the
(n−1)th level then ;N

i=1 a
†
iYn−1 will also be an eigenfunction of its nth

level. But after we replace a†i by a
−

i
†, all these Dn−1 states vanish. Therefore,

the number of independent states or the degeneracy of nth energy level of
Hrel(w) is:

Drel, n=Dn−Dn−1 (n=1, 2,...) (18)

We can immediately see that Drel, 1=0. These Drel, n independent states can
be orthogonalized by choosing the appropriate linear combinations of the
original Dn states in (16). This can be done in principle for any nth level,
but the algebra gets messy as n increases. Here we only list the independent
symmetrized krel, n up to n=4.

krel, 2=C
N

i=1
a −i
†2krel, 0=2 1w C

N

i=1
x −i
2−
N−1
2
2 krel, 0

krel, 3=C
N

i=1
a −i
†3krel, 0=(2w)3/2 C

N

i=1
x −i
3krel, 0

krel, 4a=1 C
N

i=1
a −i
†222 krel, 0

=54w2 1 C
N

i=1
x −i
222−4(N+1) w C

N

i=1
x −i
2+(N+1)(N−1)6 krel, 0

krel, 4b=C
N

i=1
a −i
†4 krel, 0

=54w2 C
N

i=1
x −i
4−
12(N−1) w

N
C
N

i=1
x −i
2+
3(N−1)2

N
6 krel, 0 (19)

Note that krel, 4a and krel, 4b are independent but not orthogonal. All krel, 4’s
can be written as their linear combinations.
Combining Eq. (9) and Eq. (17), the (n, m) energy level of the 1d

harmonic interaction model is

En, m=1n+
N−1
2
2 w+m+1

2
(n=0, 2, 3,...; m=0, 1, 2,...) (20)
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The spectrum is specified by two quantum numbers: relative excitation
n and center of mass excitation m. The degeneracy of level (n, m) is
Dn, m=Drel, n. For w > 1 or K > 0 case, the spectrum indicates a band struc-
ture. Within the nth energy band, there are n sub-energy levels (n ] 0). The
spacings between them are 2D, D,..., D, where D=w−1. The states without
center of mass excitation are the highest (lowest) ones in the energy band
for w > 1 (w < 1) except at the n=1 level. This is one explicit example of
how the interaction causes energy level breaks into bands.
Now, we are ready to calculate the free energy of the harmonic

interaction model at finite temperature T. The N-body partition function is

Z(b; w)=C
n, m
Dn, m e−bEn, m

=1C
n
Drel, n e−bnw21C

m
e−bm2 e−b( N−12 w+12)

=1C
n
(Dn−Dn−1) e−bnw21C

m
e−bm2 e−b( N−12 w+12)

=
sinh bw2
sinh b2

Z0(b; w) (21)

where Z0(b; w)=(; n D(n) e−bnw) e−bNw/2 is the partition function for N
non-interacting Bose 1-d harmonic oscillators with frequency w and
b=1/kT. The free energy follows,

F(b; w)=−
1
b
ln Z(b; w)=F0(b; w)−

1
b
ln 1 sinh

bw

2

sinh b2
2 (22)

where F0(b; w) is the free energy for non-interacting Bosons.
The harmonic interaction model in d dimensions can be solved

following the same line as the 1-d case. The energy (n, m) level of Eq. (1)
now is given by

E (d)n, m=5n+
(N−1) d
2
6 w+m+d

2
(n=0, 2, 3,...; m=0, 1, 2,...) (23)

The degeneracy of the (n, m) state is

D (d)n, m=D
(d)
rel, n D

(d)
1, m (24)
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where D (d)rel, n is the degeneracy of the nth relative energy level and D
(d)
1, m is

the degeneracy of the mth level of a single d dimension harmonic oscillator.
D (d)rel, n can be determined by

D (d)n = C
n

m=0
D (d)n−m, m= C

n

m=0
D (d)rel, n−m D

(d)
1, m (n=0, 1,...) (25)

where D (d)n is the degeneracy of the nth level of N non-interacting Bose
d-dimension harmonic oscillators with frequency w. Equation (25) comes
from the fact that the total number of states in the nth band is equal to
those of nth level when w=1 (non-interacting). In the special case d=1,
D (1)1, m=1 for all m and Eq. (25) can be shown equivalent to Eq. (18).
From Eq. (24), we know that the partition function of d dimensions

harmonic interaction model is given by

Z (d)(b; w)=Z(d)rel (b; w) z
(d)
1 (b; 1) (26)

where Z (d)rel (b; w) is the contribution from the relative part and z
(d)
1 (b; 1)

is from the center of mass part. On the other hand, for N non-interact-
ing Bose harmonic oscillators with frequency w, its partition function
Z (d)0 (b; w)=; n D

(d)
n e

−(n+Nd/2) bw. From Eqs. (23) and (25), it can be
written as

Z (d)0 (b; w)=Z
(d)
rel (b; w) z

(d)
1 (b; w) (27)

Dividing Eq. (26) by Eq. (27), we obtain

Z (d)(b; w)=Z(d)0 (b; w)
z (d)1 (b; 1)
z (d)1 (b; w)

(28)

The free energy is a direct generalization of Eq. (22)

F (d)(b; w)=F(d)0 (b; w)−
d
b
ln 1 sinh

bw

2

sinh b2
2 (29)

where we have made use of z (d)1 (b; w)=2
d/sinhd bw2 .

To make a comparison with the mean-field solution, we calculate the
one-body density function in 3-d by integration of the normalized ground
state wavefunction

Y0(r1,..., rN)=
w3(N−1)/4

p3N/4
exp 5−w

2
C
N

i=1
r2i+
E

2
1 C
N

i=1
ri 2

26 (30)
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The one-body density function takes the form

r1(r)=N 5
w

(1+E) p
6
3
2
e−

w

1+E
r2 (31)

where E=(w−1)/N. On the other hand, the mean-field equation for
interaction f is

− 12 N
2k(r)+u(r) k(r)+k(r) FNf(r− r −) k2(r −) dr −=mk(r) (32)

where k(r)=`r1(r)/N.
If we take f(r− r −)=K(r− r −)2, Eq. (32) has the solution

k(r)=1w
p
2
3
4
e−

1
2
wr2 (33)

with m=3
2 w.

Comparing the mean-field solution Eq. (33) with the exact solution
Eq. (31), one can see that if w is fixed as constant and EQ 0 (NK is kept
constant and NQ.) then the mean-field solution is recovered. At finite N,
the leading correction to the mean-field solution is of the order of
E=(w−1)/N. The density profile becomes less narrow for attractive
interaction (K > 0) and less broad for repulsive interaction (K < 0) than the
mean field solution. In fact, a rigorous derivation of the mean-field
approximation from the basic Hamiltonian with genuine particle interac-
tion has been established recently in ref. 10.

3. COMPARISON WITH PSEUDO-POTENTIAL SYSTEM

So far, the harmonic interaction model has merely served as a ‘‘toy
model.’’ In all realized BEC experiments up to now, the interactions
between atoms are all of short-range nature. One might doubt the validity
of using the long-range harmonic interaction model as a reference model to
study the real BEC. However, in both situations, the particles have been
confined in a finite region by the harmonic trap, so the difference between
long-range and short-range interaction is not so significant. In our model,
there is only one controlling parameter w. If we can find a way to obtain
the effective w for the short-range interaction system, our model under this
effective w may give some relevant properties of the real system.
The simplest way one can think of is via a variational principle. If we

use Eq. (30) as a variational ansartz for the ground state wavefunction of
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the real system, we can obtain the optimal w by minimizing the expectation
value of energy. The Hamiltonian of the real system is

Hreal=
1
2
C
N

i=1
(p2i+r

2
i )+C

i < j
f(ri− rj) (34)

where f(ri− rj) can be any kind of interaction.
The expectation value of Eq. (34) can be calculated as

Ereal(w) = OY0 | Hreal |Y0P

= OY0 | Hhar |Y0P+OY0 | Hreal−Hhar |Y0P

=
3
2
+
3
2
(N−1) w

+
N(N−1)
2

F r2(r, rŒ)[f(r− rŒ)−K(r− rŒ)2] dr drŒ

=
3
2
+
N(N−1)
2

Of(`2 r)Pw+
3(N−1)
4
1w+1

w
2 (35)

where Of(`2 r)Pw=Of0(r; w)| f(`2 r) |f0(r; w)P and f0(r; w)=
(wp )

3/4 e−
1
2
wr2.

The optimal w can be determined by dEreal(w)dw =0, that is

N
d
dw

Of(`2 r)Pw+
3
2
11− 1

w2
2=0 (36)

To make a comparison, we use the pseudo-potential f(r)=gd (3)(r), where
g=4pa and a is the scattering length. Now, Of(`2 r)Pw=g(

w

2p)
3/2 and

Eq. (36) becomes

=2
p
Naw1/2+1−

1
w2
=0 (37)

where Na is a dimensionless quantity often used in pseudo-potential
GP equation to describe the interaction strength between atoms. From
Eq. (37), we can solve for w as a function of Na. Substituting (37) back in
(35), we have

Ereal=
3
2
+
1
4
(N−1) 1w+5

w
2 (38)
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In the so-called Thomas–Fermi limit, Na± 1, Eq. (37) gives w=
(`2

p Na)
2/5 and Eq. (38) becomesEreal=

5
4 (
2
p)
1/5(Na)2/5(N−1)which can be

compared with the GP equation’s Thomas–Fermi limit E= 5
14 (15Na)

2/5N.
We observe that Eq. (37) has solutions for w only whenNa \Nacritical=

−`p2 4/5
5/4=−0.671 and they all correspond to the minimum of Eq. (35).

The existence of the negative lower bound for Na corresponds to the criti-
cal collapse value of the attractive interaction. The collapse of attractive
interactions has been observed in the tunable Na BEC system and our
critical value is quite close to Nacritical=−0.575 given by the GP equation.
We calculate the density profile of Eq. (31) under the w determined by

Eq. (37). For repulsive interaction (a > 0), it gives w < 1, which corre-
sponds to a wider spread of density than in the non-interacting case. We
find good agreement with the numerical solution of GP equation when Na
is small. Because the density given by our model is intrinsically Gaussian,
we are not able to give the nonlinear behavior of the GP equation when Na
is large.
If we take w determined by Eq. (37) as effective parameter in the

harmonic interaction model for repulsive interaction (a > 0), the energy
spectrum moves toward the ground state. The number of states below a
fixed excitation energy has been increased. The excitation spectrum of the
pseudo-potential system has been solved numerically by Bogoliubov-type
equation. It follows the same trend except that more energy levels are
broken than in the harmonic interaction model.
For the harmonic interaction model, the thermodynamic limit is

taken as NQ., and NK is fixed, or w is fixed. The free energy (29) then
will just be the one for N non-interacting Bose harmonic oscillators with
frequency w. In 3-dimensions, the BEC transition temperature is just

kBTc=w 5
N
z(3)
6
1
3

(39)

where z(x) is Riemann zeta-function. Tc is lower than in the non-interacting
case for w < 1. Meanwhile, study of the thermodynamic properties of the
pseudo-potential system also suggests that Tc becomes lower for a > 0.
We also observe that the type of exact solution for the harmonic

interaction model which represents vortex states (11, 12)

Yv=D
N

j=1
a −†j, ±

oY0

=D
N

j=1
(x −j±iy

−

j)
oY0 (40)
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is of the form of Eq. (16) in 3-d, where a −j, ±=(a
−

j, x±ia
−

j, y)/`2. Therefore
it is the exact eigenfunction of the 3-d isotropic harmonic interaction
model, whereas the wavefunction with the primes omitted in Eq. (40) is not
when K ] 0. Interestingly, Eq. (40) is exactly the same form that Wilkin
et al. (13) proposed for the vortex state for the pseudo-potential system.
Furthermore, the critical rotational frequency for the onset of vortices in
harmonic interaction is exactly w. For repulsive interaction (a > 0), it is
smaller than 1 which is the critical frequency for a non-interacting system.
This again agrees with the prediction from the pseudo-potential GP
equation.
As we have seen above, the harmonic interaction model shares many

properties with the pseudo-potential system in spite of their different
nature. This can be explained as follows. For the long range harmonic
interaction, due to the trap confinement, the two body correlation function
in the ground state can be shown to be the short range Gaussian shape
function. The harmonic interaction is weighted by the correlation function
therefore only its short range part matters. The short range repulsive
interaction will resemble the K < 0 harmonic interaction because it has
negative curvature near rij=0. For the same reason, the short range
attractive interaction corresponds to K > 0.

4. DISCUSSIONS

We have shown in Section 2 that quite a few properties of the harmo-
nic interaction model are well understood due to its decoupling into rela-
tive and center of mass part. One of the most important features of the
harmonic interaction model is that it can be solved for any N so that we
can see finite N effects clearly.
We compared the harmonic interaction model and pseudo-potential

interaction model from ground state density, spectrum, transition temper-
ature and vortex state viewpoints. All these suggest similarities between two
models. The variational principle we used in Section 3 to find an effective w
for corresponding a is still very primitive and only appropriate for the
ground state, strictly speaking. To really draw a rigorous bridge between
the two models, more sophisticated methods such as those employing
unitary transformations may be employed.
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